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What is a network?



From omics to networks?



Examples
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Less IS more




More Is Different



Large Language Moadels
Diffusion models
Deep Neural Networks
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Types of Networks



Unipartite




WA
Figure 6.5: A small bipartite network.
The open and closed circles represent
two types of nodes and edges run only
between nodes of different types. It
is common to draw bipartite networks
with the two sets of nodes arranged
in lines, as here, to make the bipartite

structure clearer. See Fig. 4.2 on page 50
for another example.

Bipartite

Newman 2018



Hypergraph

Figure 6.4: A hypergraph and corresponding bipartite graph. These two networks
convey the same information—the membership of five nodes in four different groups.
(a) The hypergraph representation in which the groups are represented as hyperedges,
denoted by the loops circling sets of nodes. (b) The bipartite representation in which
we introduce four new nodes (open circles at the top) representing the four groups,
with edges connecting each of the original five nodes (bottom) to the groups to which it
belongs.

Newman 2018



(b)

Figure 6.8: Two sketches of the same tree. The two panels here show two different
depictions of a tree, a network with no closed loops. In (a) the nodes are positioned on
the page in any convenient position. In (b) the tree is a laid out in a “rooted” fashion,
with a root node at the top and branches leading down to “leaves” at the bottom.

Newman 2018



igure 6.7: Multilayer and multiplex networks. (a) A multilayer network consists of a set of layers, each containing its
pwn network, plus interlayer edges connecting nodes in different layers (dashed lines). An example is a transportation
etwork with layers corresponding to airlines, trains, buses, and so forth. (b) A multiplex network is a special case
pf a multilayer network in which the nodes represent the same set of objects or people in each layer. For instance, a
social network with several different types of connections could be represented as a multiplex network with one layer
or each type. Dynamic or temporal networks are another example, where the layers represent snapshots over time of
he structure of a single, time-varying network. In principle one can include interlayer edges in a multiplex network, as
ere, to represent the equivalence of nodes in different layers, although in practice these are often omitted.

Newman 2018
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Rmarkdown - Network Basics
15 minutes Break

Soil Metagenome - From sequences to microbe co-occurrences



 [ake a look at Metagenomics course by Dr Lagkouvardos
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The success of this complex international project is a testament to the dedication of all teams involved. Credit:
Savvas Parakamian/HCMR, Gerals Pfister, Joanna Zukowska, and Kinga Lubowiecka, Creative Team/EMBL
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 TREC https://www.embl.org/about/info/trec/

o Salamina https://www.youtube.com/watch?v=FcYOZWyTmms

* Psatha https://www.youtube.com/watch?v=BQ2hJBeSBwQ
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Linking soil biodiversity to policy

Links between global soil essential biodiversity variables (EBVs) (outer ring) are prioritized by the Soil Biodiversity
Observation Network (SoilBON) and policy sectors (center) through the use of soil ecological indicators (inner ring; table S3).
Thin lines correspond to links between EBVs and soil indicators; thicker lines refer to links between each soil indicator and
specific policy sectors. The EBVs for soil systems are proposed as a holistic system approach (table S2), where soil organisms
are intertwined with relevant soil chemical, physical, and functional properties, contributing to overall societal well-being. See
table S1 for further information on links to specific policy targets and policies. See table S2 for details of the EBVs.
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micro.
environ-
ments

biol.
functional activity

, transport
units

|
|
DEAD END |
|
i
i

=N
#“organo - ! The
mineral §

, _ pore-
iInteractions [

solid gap \ ' strycture

2D pore
metrics

Methods

mechanical
fragmentation

Micro
morphology

disturbed undisturbed

FIGURE 1 Historical development of exploring soil structure. The pore perspective is in blue, the solid perspective in ochre. Dark
colours and light colours indicate quantitative and qualitative analysis, respectively. New branches of developments with respect to research
foci are marked by milestone publications or new technical developments




1985, 16S rRNA genes of
a microbiota were
enriched using probes
and sequenced [15,16]

1960 1965 1970

1963, the term “OTU" defined by

intrinsic phenotypic similarity was

proposed to represent classified
organisms [76, 77]

FIGURE 1

Milestones of 16S rRNA gene-amplicon sequencing

1990, 16S rRNA genes of a
microbiota were amplified
and sequenced [32,33]

2006, 16S rRNA genes of a
microbiota were sequenced
in a high-throughput
manner using NGS [34]

2013, full-length 16S rRNA
genes of a microbiota were
sequenced in a high-
throughput manner [37]

2022, 16S rRNA genes of many individual
bacteria cells in a microbiota were
amplified in microdroplets and sequenced
in a high-throughput manner [38]

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

2009, mothur as a
comprehensive
bioinformatics platform for
microbial community
measurement was
developed [35]

2010, QIIME as a
comprehensive
bioinformatics
platform for microbial
community
measurement was
developed [47]

1995, clustering
method was developed
to correct the
sequencing and
amplification errors [40]

2013, computational
denoising approach
was developed to
identify correct 16S
rRNA gene
sequences [41]

2022, the term cOTU was

used to name a bacterial

type identified by its 16S
rRNA genes [38]

1977, the 16S rRNA
gene was used to
classify bacteria [9]

1999, the term OTU was used to
name a group of clustered 16S
rRNA sequencing reads [65]

2017, the term ASV was used to
name a 16S rRNA gene sequence
type identified by sequencing [80]

and

History of 16S rRNA gene-amplicon sequencing, key analysis methods, and related classification units. ASV, amplicon
sequence variants; cOTU, cell-based operational taxonomic unit; NGS, next-generation sequencing; OTU, operational taxonomic unit;

QIIME, quantitative insights into microbial ecology; rRNA, ribosomal RNA.




REVIEW

A practical guide to amplicon and metagenomic analysis of microbiome data
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Figure 3. Overview of statistical and visualization methods for feature tables. Downstream analysis of microbiome feature
tables, including alpha/beta-diversity (A/B), taxonomic composition (C), difference comparison (D), correlation analysis (E), network
analysis (F), classification of machine learning (G), and phylogenetic tree (H). Please see Table 2 for more details.




Interaction-adjusted indices of community similarity
TSB Schmidt and C von Mering

Count-based indices

(e.g., Jaccard, Bray-Curtis, etc)

Phylogenetic Indices

Samples (e.g., UniFrac)

Taxa Count Phylogeny ¢ s . B Analyses
Table | (e.g., ordination)

I SE E Ee N

TaxaInteraction Interaction Community
Network | Similarities C Similarities

Figure 1 Overview of different approaches to quantifying community similarity. Based on a taxa-sample count table, traditional count-
based indices such as Jaccard and Bray—Curtis quantify community similarity from the overlap in taxa composition (upper branch). In
contrast, phylogenetic indices such as UniFrac take into account taxa relationships, quantifying community similarity as shared
evolutionary history, based on taxa phylogeny (middle branch). Our proposed Taxa INteraction-Adjusted (TINA) and Phylogenetic
INteraction-Adjusted (PINA) indices, in contrast, take into account similarities on a taxa co-occurrence network, codified in an interaction
similarity matrix C, or in terms of cophenetic phylogenetic distances, represented in a phylogenetic association matrix ®.
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FIG 4 Networks generated using different network inference methods show notable differences in terms of edge-density
and connectivity. (A) The nine different networks generated by the different network inference methods (excluding mLDM).
The nodes for each network (representing taxa) are arranged in the same positions in a circular layout, and the differences
in the connections can be directly visualized and compared. The green links are positive associations, and the orange links
represent negative associations. The networks look dissimilar and vary widely in terms of connectivity, and it is notable that
the correlation-based methods generally produce networks with higher edge-densities. A threshold of 0.3 was set for the
correlation-based methods (sparcc, propr, spearman, and pearson), and a threshold of 0.01 was set for the direct association
methods (flashweave, spieceasi, cozine, harmonies, and spring). (B) The node overlap Upset plot indicates that all the networks
have a large proportion of common nodes involved in connections (33 out of 68). Conversely (C), the edge overlap Upset plot
shows that a very small fraction of these connections are actually shared (8 out of 202). The data used in this analysis were
the healthy stool samples from the FMT data set. mLDM is not shown in the comparisons because the algorithm failed to

converge for the particular network combination used here (default setting of the MiCoNE pipeline).
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MICROBIOLOGY

| Computational Biology | Research Article

Inferring microbial co-occurrence networks from amplicon data:
a systematic evaluation

Dileep Kishore,'** Gabriel Birzu,** Zhenjun Hu,' Charles DeLisi,'*° Kirill S. Korolev,'** Daniel Segré'**%’

AUTHOR AFFILIATIONS See affiliation list on p. 25.
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FIG 1 The workflow of the MiCoNE pipeline. The steps of the workflow can be broken down into
five major groups: (SP) sequence processing, (DC) denoising and clustering, (TA) taxonomy assignment,
(OP) OTU and ESV processing, and (NI) network inference. Each step incorporates several processes
(blue boxes), each of which, in turn, has several alternative algorithms for the same task (indicated by
the text to the right of the blue boxes). Each arrow describes the data that is being passed from one
step to another. The inputs to the pipeline are 16S rRNA sequencing reads, and the final output is the
consensus network generated from the inferred co-occurrence networks. For details on each process and

the different outputs, see Methods.




Microbiome Datasets Are
Compositional: And This Is Not
Optional

Gregory B. Gloor™, Jean M. Macklaim ', Vera Pawlowsky-Glahn? and Juan J. Egozcue®

" Department of Biochemistry, University of Western Ontario, London, ON, Canada, < Departments of Computer Science,
Applied Mathematics, and Statistics, Universitat de Girona, Girona, Spain, ° Department of Applied Mathematics, Universitat
Politecnica de Catalunya, Barcelona, Spain
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2. Pitfalls in the statistical analysis of microbiome amplicon sequencing data

3. Insight into biases and sequencing errors for amplicon sequencing with the lllumina MiSeq platform

4. The choice of the DNA extraction method may influence the outcome of the soil microbial community structure analysis

5. Biases in Prokaryotic Community Amplicon Sequencing Affected by DNA Extraction Methods in Both Saline and Non-saline Soil

6. Examining Sources of Error in PCR by Single-Molecule Sequencing, Reducing the Effects of PCR Amplification and Sequencing Artifacts on 16S
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7. Reducing the Effects of PCR Amplification and Sequencing Artifacts on 16S rRNA-Based Studies
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34.Rapid Inference of Direct Interactions in Large-Scale Ecological Networks from Heterogeneous Microbial Sequencing Data

35.Microbiome Datasets Are Compositional: And This Is Not Optional

36.Microbiome differential abundance methods produce different results across 38 datasets

37.Normalization and microbial differential abundance strategies depend upon data characteristics

38.Improved normalization of species count data in ecology by scaling with ranked subsampling (SRS)/ application to microbial communities

39.From hairballs to hypotheses-biological insights from microbial networks

40.Inferring microbial co-occurrence networks from amplicon data: a systematic evaluation
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Island Sampling Day 2016

One Day, One Island - 15th June 2016, Crete - GSC18
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) 16s rRNA amplicon study
OO 26 participants, 10 teams/routes
\\ 72 predefined locations across the island of Crete
\\ Second time point in 2022, same locations




&l

g

.

Ta




v

VRS Zahs o

’ v

0 7))

£ > ©

O E >

O © =

mSReOe

g L =S 2 8 =

S B G5 o 8 O

@), cE = I o 2 E

N Q c O O

n ese | D +
= o5 =2 S 235 2 2 0
o} O »® ™M + ¢ ® ®» O
— _ K2 O
.|b._nlu. nOCS
SS&ueZ._m O

N B > 3200 = 5

7p D
& L5 =
e >

.._%.UCAanaS

_._andda

Q e O O

S D 3

n = O

D U ©

a O



Sequences

Open data with immediate release 60.6 x 106
Available at ENA project 76.000
PRJEB21776

50.1 x 106
140 samples available (lllumina
HiSeq 2500) using Amplicon 16s 45.9 x 106
rBRNA V3V4 regions

48.5 x 106
3 Samples NOT sequenced

35.0 x 106
Dr Lynn Schriml, University of

33.3 X 106

Maryland




Metadata ENA> 2

European Nucleotide Archive

Onsite measurements

GPS coordinates Biosample: SAMEA104726343
neareSt plant metagenome from Crete soil
Etc
Organism: soil metagenome
. Sample Accession: SAMEA104726343
tOtaI n ItrOgen Sample Title: Crete soil metagenome
water content Location: 35.3518526 N 24.3609229 E
total Organ |C Carbon Center Name: INSTITUTE FOR GENOME SCIENCES,
H Sample Alias: 3
p Checklist: ERC000022

Tag: terrestrial
terrestrial medium confidence

Dr Stephanie A Yarwood, University of metagenome

Meryland | | datahub
Geographic Location 5cm
(Depth):
FAIR Data by Design - Findable - Accessible ‘E’”“°°"°e"t(:“°"= n ”T
nvironment (Material): Soi
B Interoperable B Reusable Sample Volume Or Weight 0.2596

For DNA Extraction:




ISD Crete - Reproducible analysis

GET INFER ANALY ZE

0a0° 0L _
‘.‘.’ 060, ssie — : Z
°® [ TAEAR
ao 0® g% o, —
...0 .;‘.O.o:..- —
o . 00 00070
0%4:%¢° o’ ..
Amplicon Sequencing. Exactly.

API
seqguences (fastq)
metadata (xml)

ENA> s/

European Nucleotide Archive




Taxonomic assignment

. DADA2
. Taxonomy - Silva 138 Classification DADA2 PEMA
depth ASVs Taxa ' OTUs | Taxa
. ASVs = 239000 Kingdom 1974 2 284 2
Phylum 4034 33 121 15
* faxa=3102 Order 38517 | 193 | 1224 135
e PEMA (VSEARCH) Class 24157 33 978 62
Family /1355 287 2319 @ 218
* Taxonomy - Silva 132 Genus 90137 | 1166 | 1920 582
. OTUS 6890 Species 9120 1338 44 43
Total ~ 239000 3102 6890 | 1057

e Taxa = 1057
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ASV Prevalence

no prevalent

® prevalent

0.1 0.2
Samples proportion

Mean relative abundance

10+

Prevalence

® generalists

no classification

® gpecialists

0.00

0.25 0.50 0.75
Samples proportion

1.00




Networks

Phylum

 Network analysis (FlashWeave v0.19.2)

* Focus on Richtis gorge

i, | MSystems

MICROBIOLOGY

| Computational Biology | Research Article

Inferring microbial co-occurrence networks from amplicon data:
a systematic evaluation

Dileep Kishore,">? Gabriel Birzu,** Zhenjun Hu,' Charles DeLisi,'*® Kirill S. Korolev,'** Daniel Segré'2457

AUTHOR AFFILIATIONS See affiliation list on p. 25.
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